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Chapter 7 Solutions

In all these solutions, ¢ will represent an arbitrary constant.
1
1. (a) Since f(z) =5 is a constant, / 5dx = [5z]p = 5.
0

(b) Since f(x) = —mcos(e) is a constant, /—7T cos(e) dx = —mcos(e)x + c.

(c) Since f(z) = 2% is of the form f(z) = 2™ with n = 2,
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(d) Since f(x) = 23 is of the form f(z) = 2™ with n = g,
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(e) Since f(z) = x> is of the form f(z) = 2" with n = —5,
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(f) Since f(x) = 2°°%? is of the form f(x) = 2™ with n = cos(2),

/xcos(2) dr = 1 xcos(2)+1 +ec.
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(g) Since f(x) = e is of the form f(x) = ¢*® with a = 4,
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(h) Since f(z) = e2® is of the form f(z) = e* with a = 2,
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(i) Since f(z) = e 5 is of the form f(x) = ¢ with a = —6,

1
(j) Since f(z) = e™ is of the form f(x) = e* with a = T, /e” der = —e™ +c.
m

(k) /1 édm = [In(x)]; = In(2) — In(1) = In(2) — 0 = In(2).

(1) Since f(x) = sin(2x) is of the form f(z) = sin(az) with a = 2,
/sin(?x) dx = —% cos(2x) + c.

(m) Since f(x) = sin(—3z) is of the form f(z) = sin(az) with a = —3,

/0 ? in(—32) de = {—ig Cos(—3m)} :
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(n) Since f(x) = sin(ex) is of the form f(x) = sin(ax) with a = e,
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/sin(ea:) dox = - cos(ex) + c.



(o) Since f(z) = cos(3x) is of the form f(x) = cos(ax) with a = 3,
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(p) Since f(x) = cos(—mx) is of the form f(x) = cos(az) with a = —,
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/cos(—mc) dx = —sin(—mz) + ¢ = ——sin(—7mx) + c.
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2. (a) We will first use the sum and multiple rules to find the corresponding definite
integral.

/1+3x—2x2+3x3—4x4dx

:/1dx+/3xdw—|—/—2x2dx+/3x3dx+/—4m4d$
:/1d:)c+3/:vdz—Z/dex+3/x3dx—4/x4d:U
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3, 24 3, 4
—x+2x 3x +4x 5x +c.
Note that in your assignment or exam solutions you don’t need to give as
much detail as this. I am just setting out everything carefully until you get
used to the ideas involved.

Hence
2., 3, 4.
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(b) Using the sum and multiple rules,

/—x1+23in4xdx:/—a:1dx+/28in4xdx
——/x_ldx+2/sin4xdx
1 )
:—/—d:v+2/sm4xdx
T

= —In(z) 42 (—i Cos (4a:)> +c

1
= —In(z) — 5 €0 (4z) + c.

(¢) We will first use the sum and multiple rules to find the corresponding definite
integral.
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/36_29& — 2cos (§$> dr = /36_290 dl‘—i—/—QCOS (§$) dx
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:3/6 2xd:v—2/cos (ix) dx
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Hence

/ 3¢72% — 2cos lx dv = |—6e % — 4sin lx
0 2 2 /1o
I . 1 -1 . 1
= —6e 2" — 4sin o) - —6e 2" — 4sin 5(0)

= —6e % — 4(1) — [—6(1) — 4(0)]

=2—06e 2.

(d) Using the sum and multiple rules,

/4008(—3x) — e 2y = /4cos(—3x) dx +
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(e) We will first use the sum and multiple rules to find the corresponding definite

integral.
/_2$2+€COS(1)36 dr = /—21’2 dx+/ecos(1)x dr
— _2/132 dx_'_/ecos(l):v dr
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Hence
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/ —22? + ecos(l) dr = _ng + 1 ecos(l)x
-2 3 cos(1) 72
_ 13 - cos(I)(1) | _ = —9 3 cos(1)(—2)
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= ——< (e ) — 6.
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(f) Using the sum and multiple rules,

/2 sin(3z) — 3sin(2x) + 2 cos(3z) — 3 cos(2z) dz
= /2sin(3x) dx + / —3sin(2z) dr + /2005(31‘) dx + / —3cos(2z) dx
) / sin(3z) dz — 3 / in(22) d + 2 / cos(3x) dz — 3 / cos(2x) dx

i <—%cos(3x)) 3 (—%cos(?x)) +9 (%sin(?)x)) 3 (% sin(?x)) be

2 3 2 3
=—3 cos(3x) + 3 cos(2x) + 3 sin(3z) — 5 sin(2z) + ¢

(g) We will first use the sum rule to find the corresponding definite integral.

/62+62x—4d$:/62—4d27+/€2xd$

1
= (e =Dz + et

Note that we didn’t need the multiple rule here and also note that we could
deal with e? — 4 all at once since e? — 4 is a constant.



2
= 2(e? —4)—!—%(66 —e?)

1 3
= §€6+§€2 — 8.

(h) Using the sum and multiple rules,

/ —3z7 3 + 42t + 527° 4+ 320 dx

:/—3x‘3dx+/4x4dx+/5x_5dx+/3x0dx

:—3/x_3d:v+4/x4dx+5/x_5dx+/3dx

=-3 ;x_‘%l +4 Lx4+1 +5 ;x_“l +3r +¢
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3 4 5
= 5:(;*2 + 5:1:5 — Z:(f4 + 3z +c.



